Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex
نویسندگان
چکیده
The coexistence of electrical and chemical synapses among interneurons is essential for interneuron function in the neocortex. However, it remains largely unclear whether electrical coupling between interneurons influences chemical synapse formation and microcircuit assembly during development. Here, we show that electrical and GABAergic chemical connections robustly develop between interneurons in neocortical layer 1 over a similar time course. Electrical coupling promotes action potential generation and synchronous firing between layer 1 interneurons. Furthermore, electrically coupled interneurons exhibit strong GABA-A receptor-mediated synchronous synaptic activity. Disruption of electrical coupling leads to a loss of bidirectional, but not unidirectional, GABAergic connections. Moreover, a reduction in electrical coupling induces an increase in excitatory synaptic inputs to layer 1 interneurons. Together, these findings strongly suggest that electrical coupling between neocortical interneurons plays a critical role in regulating chemical synapse development and precise formation of circuits.
منابع مشابه
Precise inhibitory microcircuit assembly of developmentally related neocortical interneurons in clusters
GABA-ergic interneurons provide diverse inhibitions that are essential for the operation of neuronal circuits in the neocortex. However, the mechanisms that control the functional organization of neocortical interneurons remain largely unknown. Here we show that developmental origins influence fine-scale synapse formation and microcircuit assembly of neocortical interneurons. Spatially clustere...
متن کاملInhibitory dendrite dynamics as a general feature of the adult cortical microcircuit.
The mammalian neocortex is functionally subdivided into architectonically distinct regions that process various types of information based on their source of afferent input. Yet, the modularity of neocortical organization in terms of cell type and intrinsic circuitry allows afferent drive to continuously reassign cortical map space. New aspects of cortical map plasticity include dynamic turnove...
متن کاملCXCR4 regulates interneuron migration in the developing neocortex.
The chemotactic factors directing interneuron migration during cerebrocortical development are essentially unknown. Here we identify the CXC chemokine receptor 4 (CXCR4) in interneuron precursors migrating from the basal forebrain to the neocortex and demonstrate that stromal cell-derived factor-1 (SDF-1) is a potent chemoattractant for isolated striatal precursors. In addition, we show that CX...
متن کاملElectrotonic Coupling between Pyramidal Neurons in the Neocortex
Electrotonic couplings (i.e., electrical synapses or gap junctions) are fundamental to neuronal synchronization, and thus essential for many physiological functions and pathological disorders. Interneuron electrical synapses have been studied intensively. Although studies on electrotonic couplings between pyramidal cells (PCs) are emerging, particularly in the hippocampus, evidence is still rar...
متن کاملPrinciples of connectivity among morphologically defined cell types in adult neocortex.
Since the work of Ramón y Cajal in the late 19th and early 20th centuries, neuroscientists have speculated that a complete understanding of neuronal cell types and their connections is key to explaining complex brain functions. However, a complete census of the constituent cell types and their wiring diagram in mature neocortex remains elusive. By combining octuple whole-cell recordings with an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016